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The differential conductance in a suspended few layered graphene sample is found to exhibit a series of
quasiperiodic sharp dips as a function of bias at low temperature. We show that they can be understood within
a simple model of dynamical Coulomb blockade where energy exchanges take place between the charge
carriers transmitted through the sample and a dissipative electromagnetic environment with a resonant phonon
mode strongly coupled to the electrons.

DOI: 10.1103/PhysRevB.79.235418 PACS number�s�: 63.22.Np, 73.23.Hk

I. INTRODUCTION

One of the great challenges of molecular electronics is to
access electron-phonon coupling within a single molecule.
Mechanically tunable atomic break junctions with trapped
small molecules such as H2, D2, and H2O exhibit a spectro-
scopic signature of their characteristic phonon modes.1 The
signature of phonons is also spectacular in the Coulomb
blockade regime in molecular single electron transistors. The
usual resonant tunneling conductance peaks as a function of
gate or source-drain voltage are surrounded by satellites,
which correspond to the emission or absorption of one or
several phonons. Specific vibrational modes were thus iden-
tified in fullerenes and suspended carbon nanotubes.2–4 The-
oretical models5–7 were developed to describe these vibra-
tional side bands in molecular transistors. In all these
investigations the single level spacing within the molecule is
larger than the energy of the vibration modes, so that only a
single molecular level needs to be considered. In this work
we investigate the opposite limit of a mesoscopic dot where
both single level spacing and Coulomb charging energy are
smaller than the energy of the phonon mode considered.
Moreover the transmission of the electrodes corresponds to
an intermediate tunneling regime described by the physics of
dynamical Coulomb blockade �DCB� through a tunnel junc-
tion in series with a dissipative environment. The samples
are micron size few atomic layer graphite foils suspended
between two platinum electrodes. The differential conduc-
tance exhibits at low temperature a power-law increase
around zero-bias characteristic of DCB through the contacts.
The graphite foil sample itself constitutes the electromag-
netic environment. More original, on the thin samples a se-
ries of periodic replica of this Coulomb blockade anomaly
was detected at multiples of 20 meV, corresponding approxi-
mately to the lowest energy out-of-plane optical mode in
graphite �ZO’�.8 These conductance dips were not observed
on two control graphite samples which were likewise sus-
pended, had similar resistance and lateral dimensions but
were over 30 times thicker. We analyze these results with a
simple model, inspired by Ref. 7, of a mesoscopic island
connected to electrodes via tunnel barriers. We model the
island by a continuous electronic spectrum coupled to a
single phonon mode, which leads to an oscillating transmis-
sion of the barriers at the contacts.7 This model can also be

solved using the so-called P�E� theory9 to describe energy
exchanges of a Coulomb blocked tunnel junction with a dis-
sipative electromagnetic environment and presents a striking
analogy with the behavior of a tunnel junction coupled to an
electromagnetic resonator in series with an Ohmic environ-
ment investigated in Ref. 10.

II. EXPERIMENTAL RESULTS ON SUSPENDED
UNGATED SAMPLES

The samples of typical size between 2 and 3 �m were
prepared by exfoliation of a highly oriented pyrolytic graph-
ite single crystal and deposition across a 1 �m wide slit
etched in a silicon nitride membrane separating two Pt con-
tacts. The number of graphene layers was estimated from
transmission electron microscopy pictures; see Fig. 1 for the
thinnest samples, which contain less than 30 layers. Electri-
cal connection was achieved simply by pressing the sample
onto the electrodes. Thus the sample resistance, Rt
=100 k� at 4.2 K, mainly consists of the resistance at the

FIG. 1. Bias dependence of the differential conductance mea-
sured on a suspended thin foil of graphite. Insets: left transmission
electron microscopy picture of the sample. Up: side view taken at
high resolution from which it is possible to estimate the number of
graphene layers of the order of 30. Right: schematic representation
of the graphite sample resistance R in series with a LC circuit rep-
resenting the Z0’ phonon mode and the two asymmetrical poorly
conducting electrodes.
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contact, and increases as the temperature is reduced. The
sheet resistance of the graphite layer itself is smaller than
5 k�, the maximal resistance of a single graphene sheet.
The differential conductance dI /dV was either measured by
modulating the voltage bias and measuring the current
modulation by standard lock-in detection or deduced from
the differential resistance obtained by applying a small ac
current Iac of typical amplitude 1–10 nA superimposed to a
dc current bias I up to 1 �A. The dc voltage drop V through
the sample was then deduced by integration of dV /dI= f�I�.
The triangular shape of dI /dV= f−1�V� observed at high bias
�above 0.15 V, see Fig. 1� can be related to the linear depen-
dence of the density of states ��E�, characteristic of the band
structure of graphene as well as of graphite at high enough
energy.11 Indeed, the electronic transmission between the
graphite sample and the electrodes is low, so that the chemi-
cal potential can be considered as uniform along the graphite
sheet equal to EF. This remains true in the presence of mod-
erate disorder in the graphite sheet. The voltage drops V
mainly at the contacts whose chemical potential relative to
EF are respectively given by �eV and �1−��eV. The param-
eter 1 /2���1 characterizes the asymmetry of the contact
resistances and voltage drop with �=1 /2 corresponding to
symmetrical contacts. Neglecting Coulomb blockade effects,
the zero-temperature differential conductance can then be
written as the sum of the contributions of the carriers in-
jected from both electrodes:

dI/dV � �L�R����EF + �eV� + �1 − ����EF − �1 − ��eV�� ,

�1�

where �L and �R are the transmissions of the left and right
contacts, respectively. The asymmetry between positive and
negative bias is attributed to a combination of a slight doping
of the sample and some asymmetry in the transmission of the
electrodes.

We now focus on the conductance at low voltage �below
10 meV�, which exhibits a pronounced dip at zero bias not
described by expression �1�. This behavior observed in all
investigated samples is characteristic of Coulomb blockade
through a small capacitance tunnel junction in series with a
dissipative electromagnetic environment which can exchange
energy with the tunneling quasiparticles on a scale much
smaller than the charging energy. This yields the so-called
DCB.9 The low-energy differential conductance is expected
to follow a scaling behavior as a function of V and T:

G�V� = dI/dV = Tzf�eV/kBT� , �2�

with limx→0 f�x�=C, where C is a constant and limx→� f�x�
=xz. The exponent z is expected to be �2R /RQ in the case of
two asymmetric junctions, where R is the resistance of the
environment and RQ=h /2e2 is the resistance quantum. The
data shown in Fig. 2 yield z of the order of 0.25	0.05. Such
a power-law dependence also was found in other samples
with similar exponents. It is thus reasonable to assume that
the dissipative Ohmic environment in the present case is con-
stituted by the graphene layers connected to the electrodes. A
similar behavior was already observed on multiwall carbon
nanotubes with low conductance contacts.12

In the following we discuss the bias dependence �below
0.1 V� of the differential conductance measured on the
sample investigated which is 10 nm thick and contains ng
=30 graphene layers. As shown in Fig. 3 the voltage depen-
dence of the differential resistance exhibits a series of eight
peaks resembling the zero bias one and nearly equally spaced
by 20	2 mV. Their amplitude decreases with increasing
voltage except for the broader peak at 50 mV which can be
decomposed into two overlapping peaks centered around 40
and 60 mV. The periodicity of these oscillations is confirmed
by Fourier transform; see Fig. 3. These oscillations are found
to be nearly independent of temperatures up to 1 K.

The energy scale of 20 meV does not correspond to any
simple electronic energy scale in the sample: the charging
energy for a graphite sheet of length L=3 �m is roughly
e2 /
0L=5 meV and the level spacing is �vF /ngL=30 �eV.
The characteristic Thouless energy for quantum interferences
is smaller than �vF /L=1 meV which excludes any mesos-
copic effect such as the ones reported in Ref. 13. Moreover
any resonant tunneling or Coulomb blockade effect in an
hypothetical double barrier structure of much smaller size
than the sample can also be excluded since it would give rise
to a Coulomb staircase with differential conductance peaks
instead of the observed resistance peaks equivalent to con-
ductance dips.14 On the other hand the lowest energy optical
phonon in graphite Z0’ has an energy of 15 meV.8 This
mode, which emerges from the out-of-plane transverse
acoustic mode of graphene,8,15 is only present in multilay-
ered samples and corresponds to two neighboring nonequiva-
lent planes vibrating in phase opposition along the c axis.
This phonon mode has been detected experimentally in
graphite by inelastic x-ray scattering15 and scanning tunnel-
ing spectroscopy16 with an energy of ��0=15	1 meV. The
effect of this mode on the conductance should be particularly
strong if the electronic transfer between the electrodes and
the measured graphite foil takes place through different
graphene layers on both sides of the sample.

Whereas in tunnel spectroscopy measurements ��=1 in
Eq. �1�� the anomaly in dI /dV occurs at ��0 /e, our experi-
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FIG. 2. �Color online� Left: differential conductance in the vi-
cinity of zero bias measured on a thick suspended graphite sample
measured at several temperatures between 300 mK �lower curve�
and 1 K �upper curve�. Right: the data can be rescaled according to
Eq. �2� with z=0.25. Full circles: temperature dependence of the
zero bias resistance. The continuous line is a power law of exponent
0.25.
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mental configuration with two tunnel barriers is instead ex-
pected to give rise to a double structure both at �eV=��0
and 1−�eV=��0 of respective weight � and 1−�. The ob-
served peak positions at multiple values of 20 mV instead of
15 mV can thus be attributed to the asymmetry of the con-
tacts with ��0.75 in Eq. �1�.17 Note that STM spectroscopy
on bulk graphite16 also revealed inelastic contributions due to
plasmons, which are not detected in the present experiment,
as well as high energy optical phonon modes.

III. DIFFERENTIAL CONDUCTANCE DATA ON FEW
LAYER SUSPENDED SAMPLES WITH GATE

We have also investigated thinner suspended layers with
only two or three graphene layers using a different fabrica-
tion process. They were fabricated by exfoliation of graphite
flakes and deposition on a doped silicon substrate with a
285-nm-thick oxide. The number of layers was identified us-
ing Raman spectroscopy. The underlying silicon oxide was
etched away in a hydrofluoric acid bath after contacting the
samples with a bilayer of titanium gold by standard lithog-
raphy techniques. These samples contain unfortunately much
more defects than the thicker ones described above. We show
in Fig. 4 the differential conductance on the data obtained on
one of these samples with only two or three graphene layers.
The data display closely spaced conductance dips and peaks
at low energy and dips further apart at higher bias. We at-
tribute the low bias features to energy level spacing in the
sheet. The dips spaced 6–8 meV apart are attributed to the
ZO’ modes.

Contrary to the 10-nm-thick graphite sample discussed
above there is indeed no clear separation in this very thin
layer between the energy scales corresponding to the ZO’
modes and the energy level spacing �of the order of 2 meV�.

This explains the existence of the low-energy peaks which
positions depend on the gate voltage. Beside these low-
energy features, dips at approximate multiple values of 8
meV are observed in the differential conductance. The Fou-
rier transform of the signal exhibits a peak corresponding to
this periodicity beside the main peak at 50 V−1 previously
observed. This finding is in agreement with the splitting of
the ZO’ mode predicted for the three graphene layers �see
Ref. 18�.

FIG. 3. Left panel: differential resistance of the 10-nm-thick suspended multilayer graphene sheet as a function of voltage bias measured
at 60 mK. Right panel: Fourier transform of the signal showing the 20 mV periodicity.
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FIG. 4. �Color online� Differential conductance of a suspended
trilayer graphene sheet as a function of bias measured at 60 mK for
different gate voltages. The bold curve is obtained after averaging
on the gate voltage. Fourier transform of the data revealing the 20
and 8 mV periodicities.
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We emphasize that the conductance dips described above
are only observed in thin suspended samples. They were not
detected on the two thicker �more than 100 nm� samples.
This can be understood considering that the conversion from
electric energy �depending only on the resistance of the tun-
neling barriers� into mechanical vibrations induces vibrations
whose amplitude is inversely proportional to the number of
layers in the graphite foil. The suspended character of the
sample is also essential since interaction with a substrate
suppresses considerably the amplitude of induced vibrations,
as demonstrated for carbon nanotubes.3

IV. INTERPRETATION IN TERMS OF PHONON-
ASSISTED DYNAMICAL COULOMB BLOCKADE

To explain the data more quantitatively we extended the
work of Mitra et al.7 on the phonon-assisted Coulomb stair-
case observed in transport through fullerenes molecules. The
coupling between the ZO’-phonon mode and the electrons in
the graphite sample is described using a Holstein
Hamiltonian.19 In the absence of disorder this Hamiltonian
HG reads

HG = �
k


kck
+ck + 
��0�

k

ck
+ck�b+ + b� + ��0b+b , �3�

where ck
+ are ck are the fermionic electron creation and anni-

hilation operators in momentum space, 
k is the electronic
energy, and b+ and b are the creation and annihilation opera-
tors of the bosonic ZO’ phonon of frequency �0. In contrast
with previous work,7 the electronic energy level spacing is
small compared to the phonon energy ��0. The parameter 

is the dimensionless electron phonon coupling constant
which we take close to one like in carbon nanotubes.20 The
coupling to the leads is described in the dynamical Coulomb-
blockade formalism,9 by a tunnel Hamiltonian HT

=�k,k�Tk,k�akck�
+ e−i�+H.c.. Here ak are the electron annihila-

tion operators in the leads, Tk,k� are the tunnel amplitudes,
and � is a phase operator describing the electromagnetic
environment of the junction. HG can be diagonalized with a
canonical Lang-Firsov transformation: b�=e−SbeS, HG�
=e−SHGeS where S=
�kck

+ck�b−b+�. In the limit of negli-
gible charging energy7 the transformed Hamiltonian reads
simply HG=�k
kck

+ck+��0b+b where we omit the primes for
the transformed operators. In the transformed basis HT is
given by

HT = �
k,k�

Tk,k�akck�
+ e−i�+
�b−b+� + H.c.. �4�

This expression is obtained by expanding the product
e−SHTeS under the assumption that the environment phase �
commutes with the phonon operators. It shows that the cou-
pling to phonons essentially changes the phase operator of
the junction. The current through the junction can thus be
expressed with an effective P�E� function describing the
probability of electrons to lose an energy E in a tunnel tran-
sition as in usual DCB theory.9 Since the electromagnetic
environment �em� and phonon operators commute, this func-
tion can be expressed as a convolution P�E�

=�dE�Penv�E��Pph�E−E��, where Penv�E� is the probability
of emitting a photon of energy E in the RC environment of
the junction and Pph is the probability of emitting a phonon
in the sample. The probability distribution Pph can be ob-
tained by analogy between the phase operator i
�b−b+� with
that of an �em� LC circuit with resonant frequency 1

�LC
=�0

�Refs. 9 and 10� �this can also be obtained by tracing out the
phonon degrees of freedom in Eq. �4��:

Pph�E� = e−
2 coth����0/2�

��
k

��E − k��0�ek���0/2Ik	 
2

sinh����0/2�
 ,

�5�

where � is the inverse of the phonon temperature Tph and Ik
is the Bessel function of order k. Using Eq. �A21� and stan-
dard expressions for current as a function of P�E� �Ref. 9�
one finds the differential conductance for one tunnel junction
of resistance RT:

dI

dV
=

1

RT
��

−�

eV

d
P�
� + �
−�

−eV

d
P�
�
 . �6�

The case of an energy-dependent density of states and of
asymmetric contacts can readily be included by generalizing
this expression according to Eq. �1�. For comparison with the
experiments we take a density of states of graphite of the
form ��E�=�0�1+ �E�

� �. This formula is exact for bilayer
graphene with ��400 meV �Ref. 21� and �E���. We also
take the values of RT, sample resistance R, and charging
energy deduced from the geometry and conductance data at
low bias. The only adjustable parameter is the electron pho-
non �e-ph� coupling parameter which is found to be 
=0.7.
High �e-ph� coupling was already reported in graphene for
in-plane optical modes.22 In the present case, this large �e-ph�
coupling between transverse ZO’ vibrations and strongly an-
isotropic transport in the thin graphite layer can be under-
stood if the electrical contacts between the two electrodes
and the graphite foil take place through distinct graphene
layers which is highly probable as mentioned above. As
shown on Fig. 5 the agreement with experimental data is
only qualitative especially at zero phonon temperature.
Agreement is improved when a finite phonon temperature is
included. This may describe the out-of-equilibrium phonon
populations created by incoming electrons with a transfer
rate I /e=1012 s−1 larger than the phonon inverse lifetime
�0 /Q=1011 s−1. A quality factor Q for the Z0’ phonon of the
order of 10 is indeed found in STM experiments.16 These
out-of-equilibrium effects as well as the value of Q could
moreover be enhanced in our suspended samples. We find
that the best agreement between theory and experiment is
obtained by imposing a bias-independent phonon tempera-
ture. This is probably due to the fact that we have not in-
cluded the electron temperature and the broadening of the
phonon mode due to the coupling to electrons.
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V. EFFECT OF MAGNETIC FIELD

In the following we discuss the magnetic-field depen-
dence of the differential conductance dips �Fig. 6�. They vary
both in amplitude and position between 1 and 5 T. Whereas
the first two dips and the fourth one are shifted toward lower
voltage with increasing magnetic field �both at positive and
negative bias� the third peak is shifted toward high frequency
�we consider here the negative bias data since the second and
third dips at positive bias can barely be resolved as discussed
above�. The conductance at the dips �inset of Fig. 6� either
decreases or increases with magnetic field �dips 2 and 3�, or
varies in a nonmonotonic way �peaks 0 and 1�. The typical
amplitude of the relative shifts of the dips with magnetic
field, typically 5%–20%, is of the same order of magnitude
as the relative variation in the conductance on these dips. We
attribute these effects to the field-dependent density of states
of the graphite foil in the field range where Shubnikov de
Haas �SdH� oscillations first appear. We understand qualita-
tively results of Fig. 6 taking into account the energy depen-
dence of the frequency and amplitude of SdH oscillations.
Above 1 T up to 5 T where the cyclotron frequency �c
��0, this leads to field-dependent shifts both for the bias
position �Vn�B� and conductance value �Gn�B� for the nth
conductance dip at energy ��n�n��0. They differ both in
sign and amplitude from peak to peak but have comparable
relative magnitude �see the Appendix�. Moreover, the Fourier
transform of the differential conductance shows that the peak
observed at 50 V−1 for B=0 is clearly split at B=5 T. This
splitting could be interpreted as the lifting of degeneracy
between the cyclotron and the ZO’ phonon resonances due to
e-phonon interactions.23

In conclusion we have found series of periodic dips in the
differential conductance of suspended thin layers of graphite.
These dips can be interpreted within a simple model of dy-
namical Coulomb blockade with an environment strongly
coupled to the lowest energy optical phonon mode ZO’ of
graphite. The magnetic-field dependence of the effect ob-
served when the cyclotron frequency is of the order of the
frequency of the ZO’ mode corroborates this interpretation.
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APPENDIX: P(E) THEORY OF THE PHONON MODE

We consider the case of a single tunnel junction between
a metallic lead �states with index L� and a graphite sample
�states with index S� with coupling to an optical phonon
mode with energy ��0 �operators of creation and annihila-
tion b+, b, and coupling constant 
�. The interaction with the
environment is described in terms of a phase operator � as
usually done in the dynamical Coulomb blockade theory. In
the main text we have established that the electron-phonon
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coupling can be absorbed in the tunnel Hamiltonian leading
to

Ĥ = �
L


LaL
+aL + �

S


ScS
+cS + �0b+b

+ �
L,S

�tL,SaLcS
+e−i�−
�b+−b� + H.c.� �A1�

=H0 + HT. �A2�

From this Hamiltonian the transmission rates from state
�
L ,Ei ,ni� to �
S ,Ef ,nf� can be determined using Fermi’s
golden rule. Here 
L is the electron state in the lead and 
S is
the electron state inside the graphite sample; Ei ,Ef are the
states of the environment and ni ,nf are the phonon modes;

�
L,Ei,ni�
S,Ef,nf
=

2��t�2

�
��Ei�e−i��Ef��2��ni�e−
�b+−b��nf��2

���
L + Ei + ��0ni − 
S − Ef − ��0nf�
�A3�

where we have assumed that the transmission does not de-
pend on energy.

The current is then expressed as

I = e� d
L� d
S�
L�
S

� �L�
L��S�
S�f�
L − �L�

��1 − f�
S − �S�� − e� d
L� d
S�
S�
L

� �A4�

�L�
L��S�
S�f�
S − �S��1 − f�
L − �L�� , �A5�

�
L�
S

� = �
Ef,nf,Ei,ni

Fenv�Ei�Fph�ni��
L,Ei,ni�
S,Ef,nf
. �A6�

Here Fenv�Ei� and Fph�ni� are the occupation functions of the
environment and of the phonon mode.

We now introduce the Penv�E� function of the environ-
ment which is given by

Penv�E� = �
Ei,Ef

Fenv�Ei���Ei�ei��Ef��2��Ef − E − Ei� �A7�

and the Pph�E� function of the phonon mode, which we de-
fine by the expression

Pph�E� = �
ni,nf

Fph�ni���ni�e−
�b+−b��nf��2

�����0nf − E − ��0ni� . �A8�

With these notations we can compute the integral:

P�E� =� dE�Penv�E��Pph�E − E��

= �
Ef,nf,Ei,ni

Fph�ni�Fenv�Ei���Ei�ei��Ef��2 �A9�

��ni�e−
�b+−b��nf��2����0nf + Ef − E − Ei − ��0ni� .

�A10�

Hence we find that

�
L�
S

� =
2��t�2

�
P�
L − 
S� . �A11�

This leads to the following expression for the current:

I =
2��t�2e

�
�� d
L� d
S�L�
L��S�
S�P�
L − 
S�f�
L − �L�

��1 − f�
S − �S�� −� d
L� d
S�L�
L��S�
S�

�P�
S − 
L�f�
S − �S��1 − f�
L − �L��� . �A12�

At zero temperature for constant density of states �S and
�L,

� d
L� d
S�S�LP�
L − 
S�f�
L − �L��1 − f�
S − �S��

= �S�L� d
P�
��eV − 
���eV − 
� , �A13�

where we have introduced eV=�L−�S.
After a similar development for the remaining term in Eq.

�A12� we find that the current is given by

I =
2��t�2e�S�L

�
� d
P�
���eV − 
���eV − 
�

− �− eV − 
���− eV − 
�� , �A14�

where �� . � is the Heaviside function.
The differential conductance reads for zero electronic

temperature a single tunnel junction,

dI

dV
=

1

RT
��

−�

eV

d
P�
� + �
−�

−eV

d
P�
�
 , �A15�

where

P�E� =� dE�Penv�E��Pph�E − E�� �A16�

and Pph is given by

Pph�E� = �
ni,nf

Fph�ni���ni�e−
�b+−b��nf��2

�����0nf − E − ��0ni� . �A17�

We notice that this sum corresponds to the PLC�E� distri-
bution function for an L-C environment with resonant fre-
quency �r= 1

�LC
. Indeed it is shown in Ref. 9 that

PLC�E� =
1

2��
� dt�ei��t�e−i��0��TeiEt/�, �A18�

where ��0�=�g�ia+− ia� with g= e2

2C��r
, and ��t�

=ei��ra
+a��0�e−i��ra

+a. Here the operator a+ and a are photon
creation/annihilation operators, and � . . . �T denotes thermal
averaging over the thermal distribution PLC of the photon
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modes in the resonator �Fig. 7�. After inserting these expres-
sions in Eq. �A18� we find

PLC�E� =
1

2��
� dt �

ni,nf

PLC�ni���ni�e−�g�a+−a�

��nf��2ei���rni−��rnf+E�t/� �A19�

= �
ni,nf

PLC�ni���ni�e−�g�a+−a�

��nf��2����rnf − E − ��rni� . �A20�

After the substitution 1
LC =�r=�0 and g= e2

2C��r
=
2 Eq.

�A20� has exactly the same form as Eq. �A17�. We can now
use the standard expression for PLC derived in Ref. 9 �Eq.
�99��, which reads in terms of phonon parameters:

Pph�E� = e−
2 coth����0/2��
k

��E − k��0�

�ek���/2Ik	 
2

sinh����0/2�
 , �A21�

in this equation � is the inverse phonon temperature.
In the case where the density of states in the sample �S

=�S�
S� depends on energy, Eq. �A15� can be generalized to
the following form:

dI

dV
=

��t�2�Le2

�
��eV

d
P�
���S	 eV

2
− 

 + �S	−

eV

2




+ �−eV

d
P�
���S	 eV

2
+ 

 + �S	−

eV

2


� . �A22�

This expression was derived from Eq. �A12� by assuming an
asymmetric potential drop on the junction �L=eV /2 and
�S=−eV /2. We notice that in general the conductance is an
asymmetric function of the bias V, however, symmetry is
recovered if the density of states �S is symmetric around the
Fermi energy �S�V�=�S�−V�.

1. Density of states with emerging Landau levels

In presence of a magnetic field the density of states ac-
quires an oscillating component as a function of energy

�S�
� = �S + �1 cos



��c
, �c =

eB

m
. �A23�

We will note G0�V� the value of dI /dV for �1=0 in ab-
sence of magnetic field. With this notation the general Eq.
�A22� can be cast in the following form:

dI

dV
= G0�V�	1 +

�1

2�s
cos

eV

2��c



+
��t�2�L�1e2

� ��
−�

eV

d
P�
�cos	 eV − 2


2��c



+ �
−�

−eV

d
P�
�cos	 eV + 2


2��c


 . �A24�

The origin of the peak’s displacement can be understood on
a heuristic level from just the first term of this equation,

dI

dV
� G0�V�	1 +

�1

2�s
cos

eV

2��c

 . �A25�

We develop this expression around Vn=n��0 where G0
has a minimum �for simplicity we do not keep the second-
order term in the development of the density of states�;

dI

dV
� �G0�Vn� +

G0��Vn�
2

�V − Vn�2

��1 +

�1

2�s
cos

eVn

2��c
−

�1e

4�s��c
sin

eVn

2��c
��V − Vn��� .

�A26�

This expression has a minimum at

V = Vn +
�1

4�S

e

��c

G0�Vn�
G0��Vn�

sin
eVn

2��c
= Vn + �Vn, �A27�

while the change in differential conductance at V=Vn reads

dI

dV
�Vn� = G0�Vn� + G0�Vn�

�1

2�s
cos

eVn

2��c
= Gn + �Gn.

�A28�

In these equations we have introduced the notations �Vn and
�Gn for the displacement of the peak and for the change in
conductance. Combining the two previous equations leads to

�Vn

Vn
=

e

2��cVn

G0�Vn�
G0��Vn�

tan
eVn

2��c

�Gn

Gn
�eVn = n��0� .

�A29�

Thus the Shubnikov–de Haas oscillations in the density of
states lead to a shift that depends on the peak position. In this
calculation we have only taken into account the mixing be-
tween the differential conductance oscillations due to the
presence of an optical phonon mode at energy ��0 and the
oscillations due to the emergence of Landau levels in the
density of states ��c. Such a mechanism is of course pos-
sible only in the regime where ��0 and ��c have the same
order of magnitude. Other effects may also contribute includ-
ing broadening and energy displacement of the phonon mode
in presence of magnetic fields.24

Γ

FIG. 7. Schematic representation of the graphite sample of re-
sistance R connected to a single tunnel junction characterized by its
transmission � and capacitance C. In the text we show that the
phonon mode can be represented as an LC circuit with parameters
determined by 1

LphCph
=�0 and e2

2Cph��0
=
2.
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